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Abstract

Gallai's classical result on interval packing can be applied in VLSI routing to �nd,
in linear time, a minimum-width dogleg-free routing in the Manhattan model, provided
that all the terminals are on one side of a rectangular [1]. Should the terminals appear
on two opposite sides of the rectangular, the corresponding "channel routing problem"
is NP-complete [2, 3].

We generalize Gallai's result for the case if the terminals appear on two adjacent
sides of the rectangular.
Keywords: VLSI, routing, Manhattan model, polynomial algorithm, complexity
Abbreviated title: Polynomial Time Manhattan Routing without Doglegs

1 Introduction

Let s and w be given positive integers, and let us consider the (w + 1) � (s + 1) square
planar grid graph G = (V;E), where V = f (x; y) j 0 � x � s+ 1 and 0 � y � w + 1 g, and
E = f ((a; b); (c; d)) j (a; b) 2 V; (c; d) 2 V; ja� cj+ jb� dj = 1; 0 < a+ c < 2s+ 2 and 0 <
b + d < 2w + 2 g. The integers s and w are called the length and width, respectively, of
G. The points on the boundary of G, with the exception of its four corners, will be called
terminals. In particular, the points with coordinates (x; 0) 2 G, 0 < x � s will be called
Southern terminals, while those with (0; y) 2 G, 0 < y � w will be calledWestern terminals.
(Eastern and Northern terminals can be de�ned analogously.)
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Figure 1: The grid graph G, when s = 5 and w = 4.

We shall call a set of terminals a net, and a collection of pairwise disjoint nets will be
called a routing problem. (In a routing problem some terminals may belong to no nets.) A
realization (or wiring) of a net is a connected subgraph (usually a tree) of G connecting the
terminals belonging to the net, and not containing any other terminals. The restrictions
in the de�nition of E imply that all connections must be realized through the \interior" of
G, and no line segments on the boundary can be used as edges. A solution (or a wiring
plan) of a routing problem is a set of t-disjoint realizations of all the nets in the problem,
where the expression t-disjoint refers to some disjointness-type requirement depending on
the technology under consideration.

A routing problem is called single-row routing problem if every terminal is on one side
of G, say e.g. Southern. It is called channel-routing problem if the terminals are on two
opposite sides, e.g. every terminal is either Northern or Southern. Final, we shall call a
routing problem gamma-routing if the terminals belong to two adjacent sides, e.g. if every
terminal is either Southern or Western. All these are special cases of the switchbox-routing
problems where the terminals can be at any of the four sides of G. Hence gamma- and
channel-routing are two possible generalizations of the single row routing problem while
switchbox-routing is their common generalization.

Throughout this paper we shall consider the "Manhattan-model," that is, we suppose 2-
layer routing with one layer reserved for the horizontal and one for the vertical line segments.
Whenever a horizontal and a vertical line segments are adjacent to (x; y) 2 G in a realization
of a net, we assume that a via hole is punched at (x; y). (Hence changes in wire direction
are realized by via holes.) In our paper we shall consider the standard technology in which
t-disjointness means edge-disjointness with the additional restriction that two distinct paths
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may cross each other at a grid point but so called knock-knees, i.e. grid points used as turning
point by two distinct paths, are prohibited.

For example, if s = w = 1 and f(0; 1); (2; 1)g and f(1; 0); (1; 2)g are the two nets in
a switchbox-routing problem then there is a solution in the Manhattan-model. However,
should the nets be f(0; 1); (1; 0)g and f(2; 1); (1; 2)g then the only edge-disjoint realization
would use the point (1; 1) as a knock-knee. (Recall that neither the corners nor the other
terminals can be used by a net.)
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Figure 2: Figure (a) shows a simple routing problem with a feasible solution, while the
problem in �gure (b) has no feasible solution.

Let us consider a net N consisting of a = a(N) Southern and b = b(N) Western terminals.
Then any Manhattan-realization will clearly require at least a + b � 1 via-holes if both a

and b are positive, and at least a + b via-holes otherwise. Let us call a realization of net
N dogleg-free, if the number of via holes in it attains the above minimum. For example, in
Figure 3 we can see both dogleg-free and non dogleg-free realizations of the same nets.
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Figure 3: A dogleg-free and a non dogleg-free realization of the same net with 4 Southern
and 4 Western terminals.
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Recall that the channel routing problem in the Manhattan model, with or without
doglegs, is NP-hard [2, 3]. For additional results regarding the complexity of these and
related problems see also [4, 5, 6].

In this paper we shall consider gamma-routing problems in which each netN has minfa(N);
b(N)g � 1, and show that Gallai's algorithm can be generalized for this case. Our algorithm
runs in polynomial time in the number of grid-points and provides either a dogleg-free solu-
tion, or proves that such solution does not exist.

2 De�nitions and basic properties

Let us consider a grid-graph G = (V;E) as before with w Western and s Southern terminals,
and let us consider a gamma-routing problem for the nets given as Nr = (Wr; Sr), r = 1; :::; n,
where Wr � f1; 2; :::; wg denotes the set of non-zero coordinates of the western pin positions,
and Sr � f1; 2; :::; sg denotes the set of non-zero coordinates of the southern pin positions of
the rth net. In other words, points of the form (0; j) for j 2 Wr are the Western terminals,
while points of the form (i; 0) for i 2 Sr are the Southern terminals of Nr.

We shall assume in the sequel that

(i) Wr \Ws = ; and Sr \ Ss = ; for r 6= s, and that

(ii) for every net Nr = (Wr; Sr) either jWrj � 1 or jSrj � 1.

Let us observe �rst that if jWrj = 1 or jSrj = 1, then Nr has a unique dogleg-free
realization, therefore the input of the considered gamma-routing problem consists of the
following three types of nets: West only nets (i.e. for which Sr = ;), South only nets (i.e.
for which Wr = ;), and uniquely realizable nets, i.e. those with jNrj = 1 or jSrj = 1.

We can therefore assume without any loss of generality that the uniquely realizable nets
are processed �rst, and let us label the nets such that Nj, j = 1; : : : ; u are the uniquely
realizable ones.

Let us de�ne an (i; j)-realization of the (West only or South only) net Nr the one which
is dogleg-free, and has a via at (i; j), and for which j = minWr in case of a West-only net,
and i = minSr in case of a South-only net (i.e. if Nr is West-only, then it is realized by
connecting its pins (0; j), j 2 Wr to the vertical line segment between (i; 0) and (i;minWr),
and placing a via hole at each points of the form (i; k) for k 2 Wr.)

We shall say that a realization of Nr is in conict with a realization of Ns (s 6= r), if the
two realizations are not t-disjoint, i.e. if the two subgraphs would share an edge or a via
hole.

Let us denote by Fr the set of gridpoints (i; j) for which there exists an (i; j)-realization
of Nr. We shall initialize Fr, r = u + 1; :::; n, by including in Fr all grid points for which
the corresponding realization of Nr is not in conict with the (unique and already �xed)
realizations of the nets Nj, j = 1; :::; u.

Our problem is now to �nd an assignment Nr 7! (i; j) 2 Fr such that no two of these
realizations are in conict.
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We shall construct such an assignment, by �xing successively the realizations of some of
the nets, and then eliminating the conicting realizations from the sets Fr for the remaining
nets Nr. Thus, in any given moment, there will be some nets already realized, and some
others, which are still unrealized.

Given such a situation, let us say that the assignment (i; j) 2 Fp for an unrealized net Np

is forbidden, if there exists another unrealized net Nq for which the (i; j)-realization of Np is
in conict with all possible realizations from Fq of Nq. We shall also say that (i; j) 2 Fp is
infeasible if it is in conict with the realization of some of the already realized nets.

Let us �nally write (i; j) � (i0; j 0) if i � i0 and j � j 0, and let us say that (i; j) is a
minimal element of a set S of grid points, if (i; j) 2 S and there is no (i0; j 0) 2 S for which
(i0; j 0) � (i; j) and (i0; j 0) 6= (i; j).

3 Proposed algorithm

We are now ready to formulate our Algorithm:

Input: A gamma-routing problem with nets Nr = (Wr; Sr), r = 1; :::; n
satisfying conditions (i) and (ii) above.

Initialization: Relabel nets such that Nr, r = 1; :::; u are the uniquely
realizable ones, and �x the realization of these nets. Set U =
fu+ 1; :::; ng and initialize the sets Fr, r 2 U as above.

Repeat while U 6= ;

Step 1: For all r 2 U delete all gridpoints (i; j) from Fr for which
the (i; j)-realization of Nr is infeasible.

Step 2: For all r 2 U delete all gridpoints (i; j) from Fr for which
the (i; j)-realization of Nr is forbidden.

Step 3: If Fr = ; for some r 2 U , then STOP (NO SOLUTION),
otherwise

Step 4: Choose a minimal gridpoint (i; j) 2
S

r2U Fr and let Np,
p 2 U a net for which (i; j) 2 Fp.

Step 5: Fix the (i; j)-realization of Np, set Fp = f(i; j)g and
U = U n fpg.

Stop: Output solution.

To prove the correctness of the above algorithm, �rst we have to verify that its steps
are well de�ned, and it will stop either by producing a realization for all the nets, or stops
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with NO SOLUTION. Next, we shall prove that there are indeed no feasible solutions to
the problem, when the above algorithm terminated with NO SOLUTION. Finally, we shall
show that the algorithm can be implemented to run in O(nsw) time.

It is quite clear that Step 3 can always be carried out in a unique way. To see that no
ambiguity arise in Step 4, we need the following two lemmas.

In the �rst lemma below we show that in the course of the above algorithm, in Step 4,
any minimal gridpoint corresponds always to a unique net as a feasible realization.

Lemma 1 If (i; j) 2
S

r2U Fr is a minimal gridpoint, then there exists a unique index p 2 U
for which (i; j) 2 Fp.

Proof. Let us observe �rst that (i; j) 2 Fr implies that either (0; j) 2 Wr or (i; 0) 2 Sr.
Thus, if there were two nets Np and Nq such that (i; j) 2 Fp \Fq, then one of them must be
a West-only, and the other one must be a South-only net. Let us say, e.g. that Sp = ; and
Wq = ;.

Then, by the de�nition of an (i; j)-realization, we must have

j = minWp and i = minSq:

Since (i; j) is minimal in
S

r2U Fr, for all (i
0; j 0) 2 Fp we have i

0 � i and j 0 = j, and thus all
possible realizations in Fp of Np would share the horizontal line segment [(i; j); (i0; j)] with
the considered (i; j)-realization of Nq, i.e. would be forbidden and hence would have been
eliminated from Fq, contradicting the fact that (i; j) 2 Fq. This contradiction proves that
no two nets can have the same minimal gridpoint in their sets of feasible realizations. 2

In the next lemma we show that di�erent minimal gridpoints in Step 4 of the above
algorithm correspond to non conicting realizations, and hence �xing these realizations in
any order will yield the same solution.

Lemma 2 If (i; j) 6= (i0; j 0) are both minimal gridpoints in
S

r2U Fr, and (i; j) 2 Fp, (i
0; j 0) 2

Fq (then by Lemma 1 we must have p 6= q), then these two realizations of Np and Nq are not
in conict.

Proof. Without loss of generality we may assume that e.g. i < i0 and j > j 0. It is easy to
verify that the only possible conict between these realizations occurs when Nq is West-only,
and Np is South-only, and either (i0; 0) 2 Sp, or (0; j) 2 Wq (or maybe both).

Let us consider e.g. the case when (i0; 0) 2 Sp. Since (i; j) 2 Fp is a minimal gridpoint,
we have j 00 � j for all (i; j 00) 2 Fp, and hence all those realizations of Np would share the
vertical line segment [(i0; j 0); (i0; j 00)], which is a non-empty segment, since j 0 < j � j 00. Thus,
the (i0; j 0)-realization of Nq would be forbidden by the de�nition, contradicting the fact that
(i0; j 0) 2 Fq. The other case, i.e. when (0; j) 2 Wq, can be treated similarly.
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Since no other case of conict can arise, the above contradictions prove the lemma. 2

The above lemmas show that in Step 4 of the Algorithm there is a unique net corre-
sponding to every minimal gridpoint, and these nets can be realized in any order. To verify
the correctness of the algorithm the only thing left to show is that in case of termination in
Step 3, there are indeed no solutions.

Lemma 3 If the above Algorithm stops with no solution produced, then there exists no
feasible solution.

Proof. Let us relabel the nets according to the order the Algorithm processed them, and
assume that Nr was realized at (ir; jr) 2 Fr for r = u+ 1; :::; t (t < n), after which Ft+1 = ;
was found.

Let us then assume indirectly that there exists a feasible solution, and let k be the
maximal index for which Nr is realized in the feasible solution by (ir; jr) 2 Fr, for every
u < r < k, and in which Nk is realized at (i0; j 0) 6= (ik; jk). We may assume without any loss
of generality that Nk is South-only. Since (ik; jk) is a minimal element of Fk, according to
Step 4, after the speci�ed realizations of the �rst k � 1 nets, we must have

ik = i0 and jk < j 0:

Since (ik; jk) 2 Fk is a feasible realization of Nk at this moment, the half line (y; jk) for y � ik
must be unoccupied (no via hole and no horizontal segment is used) by the realizations of
the �rst k � 1 nets.

Let us now �x the realizations of all uniquely realizable nets and all West-only nets in the
feasible solution, and let us run Gallai's algorithm for the remaining South only nets. Since
there is a feasible solution, Gallai's algorithm is guaranteed to produce one, by processing
the nets in left-to-right order and placing the horizontal segments of the realizations always
on the �rst available horizontal line. Thus, by the selection of (ir; jr) 2 Fr for r < k, all
South-only nets Nr with r < k will be realized by Gallai's algorithm with exactly the same
realization as in the Algorithm. As a next step, the horizontal segment of Nk will be
placed on the horizontal line (y; jk), y � ik, since that line is the �rst available according
to the observations we made above. Thus Gallai's algorithm guarantees the existence of
another feasible solution, in which there is one more net, counting from the beginning, which
is realized in agreement with our Algorithm. Repeating the above, we could arrive to a
feasible solution, realizing all the nets Nr r = 1; :::; t exactly the same way as theAlgorithm,
contradicting the fact that at this moment Nt+1 cannot be realized. This contradiction shows
that our assumption on the existence of a feasible solution must have been wrong, and thus
proves the lemma. 2

To see the complexity of the above algorithm, we have to observe �rst that by using
appropriate data structures, steps 3{5 of the algorithm can be carried out in constant time
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Figure 4: A solution to a simple gamma-routing problem, produced by our algorithm. The
terminals of the nets are labeled by the same letter { nets 1 and 2 are uniquely realizable,
nets a,b, and c are South-only, while nets d,e,f, and g are West-only. The numbers within
the routing region denote the order in which the nets were realized by the algorithm.

per checked gridpoint. Since a gridpoint can correspond to at most two nets, the total time
needed to perform steps 3{5 is O(sw). It is also easy to see that both steps 1 and 2 can
be implemented to run in O(sw) time, and since there are no more than n iterations of the
while-loop, the total time of all the steps of the algorithm can be bounded by O(nsw).
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